ADMIRE framework for data mining and integration
نویسندگان
چکیده
In this paper we presents the data mining and integration of environmental applications in EU IST project ADMIRE. It briefly presents the project ADMIRE and data mining of spatio-temporal data in general. The application, originally targeting flood simulation and prediction is now being extended into the broader context of environmental studies. We describe several interesting scenarios, in which data mining and integration of distributed environmental data can improve our knowledge of the relations between various hydro-meteorological variables.
منابع مشابه
Mining Environmental Data in the ADMIRE Project Using New Advanced Methods and Tools
The project Advanced Data Mining and Integration Research for Europe (ADMIRE) is designing new methods and tools for comfortable mining and integration of large, distributed data sets. One of the prospective application domains for such methods and tools is the environmental applications domain, which often uses various data sets from different vendors where data mining is becoming increasingly...
متن کاملAdmire framework: Distributed data mining on data grid platforms
In this paper, we present the ADMIRE architecture; a new framework for developing novel and innovative data mining techniques to deal with very large and distributed heterogeneous datasets in both commercial and academic applications. The main ADMIRE components are detailed as well as its interfaces allowing the user to efficiently develop and implement their data mining applications techniques...
متن کاملUsing Advanced Data Mining and Integration in Environmental Prediction Scenarios
We present one of the meteorological and hydrological experiments performed in the FP7 project ADMIRE. It serves as an experimental platform for hydrologists, and we have used it also as a testing platform for a suite of advanced data integration and data mining (DMI) tools, developed within ADMIRE. The idea of ADMIRE is to develop an advanced DMI platform accessible even to users who are not f...
متن کاملKnowledge Discovery on the Grid
In the last few decades, Grid technologies have emerged as an important area in parallel and distributed computing. The Grid can be seen as a computational and large-scale support, and even in some cases as a high-performance support. In recent years, the data mining community have been increasingly using Grid facilities to store, share, manage and mine large-scale data-driven applications. Ind...
متن کاملJoint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کامل